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Summary 
This review summarizes recent developments in the area of porphyrin chemistry in the direction of biological 
applications. Novel synthetic methodologies are reviewed for porphyrin synthesis, porphyrin analog synthesis, stable 
porphyrinogens - calixpyrroles, expanded porphyrins. Unique biological properties of those compounds are desribed 
with focus on photodynamic therapy (PDT) and molecular recognition properties. Special attentions given to 
metalloporphyrins with potential to affect heme degradation and CO formation. 
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1. Porphyrin skelet in nature 
 
 Naturally occuring porphyrins are synthesized 
by living matter. Among the best known natural 
structures utilizing porphyrin skelet are vitamin B12 
(Fig. 1), chlorophyll (Fig. 3), uroporphyrins, 
coproporphyrins and heme (Fig. 2). 
 In the natural system, vitamin B12 is known to 
have a contracted porphyrin framework which is known 
as corrin (Battersby 1994). 

 Heme, iron-containing tetrapyrrole, is 
indispenseable for life. It is utilized by a whole host of 
proteins involved in numerous cellular processes such as 
oxygen transport (hemoglobin), respiration (cytochrome 
oxidase), vascular homeostasis (nitric oxide synthases), 
detoxification (cytochromes P450), and cell death 
(cytochrome c). Heme is produced in the mitochondrion 
by a complex cellular machinery comparising eight 

enzymes that are evolutionarily conserved from bacteria 
to humans. 
 Hem is ferroprotoporphyrin complex. The basis 
of the structure is the porphyrin skelet, which is formed 
by four pyrroles linked with four methine bridges. The 
substituents, four methyls, two vinyls and two propionic 
side chains, in beta positions of pyrroles, can be arranged 
by fifteenth modality, but only one of these isomers, 
called Protoporphyrin IX, is present in living systems. 
The biological functions are ensured by its 
metallocomplex with iron. 
 Chlorophyll is one of the prevalent spread 
structures utilizing a porphyrin skelet. This structure is 
present in all green plants. In this structure, porphyrin 
form a complex with magnesium, and the magnesium 
complex is the key compound in photosynthesis. The 
main purpose of this magnesium complex is in absorption 
of irradiation. The absorption of the photons is attributed 
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to π-electrons in conjugated double bonds of molecules of 
chlorophyll. 
 
2. Synthetic porphyrins 
 

These porphyrins form the second part of 
porphyrins, porphyrins which are not present in nature 
and human body. Therefore their synthesis in laboratory 
is the only way that they can be obtained. Nowadays, 
many porphyrins have been synthesized. These structures 
are derived from the simplest porphyrin called porphyne 
(Fig. 4). 
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Porphyrins (which comes from the Greek 
πορφυροσ means “purple, scarlet”) are based on 16-atom 
rings containing four nitrogen atoms. They are 
macrocycles that contain only sp2-hybridized bridging 
meso carbon atoms within their framework. The structure 
is fully aromatic, contains 18 π-electrons. They are of 
perfect size to bind nearly all metal ions.  

By substitution of hydrogens in the meso-
position of some substitutents, the porphyrins are 
obtained. Depending on synthesis, the substituents in the 
meso-position can either be the same or different.  

The basic porphyrin skelet can be synthesized by 
several routes based on condensation reactions between 
aldehydes, pyrroles, dipyrrylmethanes or similar 
precursors under acidic conditions and following 

oxidation. The first synthesis of porphyrin - 
tetraphenylporphyrin (TPP) (Fig. 5), was first 
accomplished using benzaldehyde and pyrrole in 1936 by 
Rothmund (Rothmund 1936). Since that time, a series of 
both symetrical and asymetrical porphyrins, has been 
prepared. 

Symmetrical porphyrins are more easily 
synthesized than a asymetrical porphyrins. Their 
synthesis is based on condensation of pyrrol and aldehyde 
whereas various reaction conditions, for example Adler-
Longo conditions (Adler et al. 1967, Dattagupta et al. 
1981, Dattagupta et al. 1988, Kamogawa and Koga 1992, 
Tamiaki et al. 1993, Hombrecher and Ohm 1993, Matile 
et al. 1995, Neya and Funasaki 1997, Momenteau et al. 
1983, Reddy and Chandrashekar 1992), or Lindsey 
method can be used (Lindsey et al. 1987, Lindsey and 
Wagner 1989, Deisenhofer et al. 1985, Barkigia et al. 
1988, Groves and Nemo 1983, Bortolini and Meunier 
1984, Bortolini et al. 1986, Medforth and Smith 1990, 
Wagner et al. 1991, Cornia et al. 1994, Anderson et al. 
1998, Lindsey et al. 1994, Li et al. 1997, Onaka et al. 
1993). As shown below, the first prepared symetrical 
porphyrin had four phenyl substituents in meso-positions 
(Rothmund 1936).  

On the other hand, the asymetrical porphyrins 
are much less synthetically accesible. Ther preparation is 
based on various approaches as a Adler-Longo 
conditions, Lindsey method, 2+2 Porphyrin synthesis 
(Sessler and Johnson 1987, Hombrecher et al. 1992, 
Chambron et al. 1995, Wang and Bruce 1996, Wilson 
and Anderson 1996, Proess et al. 1992, Ravikanth et al. 
1998, Abdalmuhdi and Chang 1985, Lecas et al. 1984, 
Lecasnawrocka et al. 1984, Maruyama et al. 1988, Osuka 
et al. 1989, Sessler and Capuano 1990, Sessler et al. 
1993, Benson et al. 1990, Hombrecher and Horter 1991, 
Chang and Abdalmuhdi 1983, Sessler et al. 1986, Sessler 
and Piering 1987, Sessler et al. 1990, Pandey et al. 1992), 
3+1 Porphyrin synthesis (Boudif and Momenteau 1994, 
Boudif and Momenteau 1996, Chandrasekar and Lash 
1996, Lin and Lash 1995, Sessler et al. 1996, Lash et al. 
1998, Hayes and Lash 1998, Berlin et al. 1996, Lash and 
Chaney 1996) or synthesis of porphyrins from linear 
tetrapyrrols (Clezy and Van 1984, Wijesekera and 
Dolphin 1990, Hin et al. 1990, Pandey et al. 1992, Lash 
and Roper 1994, Lin et al. 1997, Mansuy 1992).  

An example of an asymetric porphyrin prepared 
by Lindsey (Lee et al. 1995). containing four different 
meso-substituents is shown below (Fig. 6). 
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3. Analogues of porphyrin 
 

From a single porphyrin, several isomers which 
can be derived differ by the position of the methine link 
between pyrrole rings. The study of artificial porphyrin 
analogs started in 1960s. The first isomer of this type, 
porphycene, ([18]porphyrin-(2.0.2.0) which differs in the 
pyrrole linking carbon chain ([18]porphyrin-(1.1.1.1), 
was synthesized by Vogel et al. in 1986 (Vogel et al. 
1986, Gosmann and Franck 1986)  

Since then, the other configurational isomers 
containing the same C20H14N4 composition, such as 
corrphycene ([18]porphyrin-(2.1.0.1) (Sessler et al. 1994, 
Aukauloo and Guilard 1994), hemiporphycene 
([18]porphyrin-(2.1.1.0) (Callot et al. 1995), 
isoporphycene ([18]porphyrin-(3.0.1.0) (Vogel 1996) 
(Fig. 7) and so on, have been reported.  

 
4. Inverted, confused and fused porphyrins 

 
First, the terms confusion, inversion, and fusion 

must be defined. In the normal porphyrin framework, α 
and α‘ linkage is ordinary. Confusion is defined as a 

linkage at the α and β (β‘) positions of pyrroles or other 
hetero-pentacycles. Inversion means that the pyrrole or 
other pentacycle rings are turning round and inverted is a 
state of pyrrole NH pointing outward. Fusion is used for 
the formation of a tripentacyclic ring by connection of a 
pyrrole ring to a neighbouring inverted pyrrole with its 
nitrogen (Fig. 8). 

N-confused porphyrin (NCP) is a porphyrin 
isomer that is different largely from the parent porphyrin, 
particularly in the physical, chemical, structural, and 
coordination properties. Introduction of the confused 
pyrrole into the normal and expanded porphyrins leads to 
generation of the confused porphyrinoids, which have 
rich structural diversity. 
 The first NCP was synthesized through the 
Rothemund type reaction, namely, the acid-catalyzed 
condensation of pyrrole and benzaldehyde, with 
concurrent formation of normal porphyrin. In 1994, 
Latos-Grazyński et al. and another working groups 
independently isolated a completely different isomer of 
[18]-(1.1.1.1) type (Latos-Grazyński 1999, Sessler 1994, 
Geier et al. 1999, Furuta et al. 1994, Chmielewski et 
al.1994) (Fig. 9). 

N HN

NH N NH N

N NH

NNH

N NH NHN

NH N

Porphycene Corrphycene Hemiporphycene Isoporphycene

Fig. 7   Porphyrin analogues

N

NH

N

NH

X

N

N

NHNH
X

 

N

N

N

NH

Porphyrin

inversion

Inverted poprhyrin

fusion

Fused poprhyrin

bond cleavage and reinversion
 

 
 

Fig. 7. Porphyrin analogues 

Fig. 8. Inverted and fused porphyrins 



2006  Quo Vadis Porphyrin Chemistry?   S7  
   

N

NH

N

NH

N
H

N

N

NH

HN

N

N

NH

N

N

N

N

N

N

NHNH

N-confused porphyrin
(NCP)

Trans-doubly
N-confused porphyrin

(trans-N2CP)

Cis-doubly
N-confused porphyrin

(cis-N2CP)

Triply N-confused porphyrin
(N3CP)

Fully N-confused porphyrin
(N4CP)

Fig. 9   Confused porphyrins

N

NH

N

NH

N

NH

N NH

N

N

N
NH

N
HN

N
HN

N
NH N

H
N
H

NN

N N
H N

H
N
H

N
H

N
H

N N

NN
H

Porphyrin Hexaphyrin

Octaphyrin Nonaphyrin

Pentaphyrin

 
 
 
 
5. Contracted and expanded porphyrins 
 

On the other hand, increasing attention has been 
paid to a class of porphyrin analogs with different core 
sizes, namely, expanded (Fig. 10) and contracted 
(Fig. 11) porphyrins. The higher homolog with all 
methine-bridges, pentaphyrin, was reported by Gossauer 
in 1983 and shown to sustain a 22 π-aromatic periphery 
(Gossauer 1983). 

In 1964, Johnson et al. synthesized the first 
contracted porphyrin with an 18 π-electron system, 
corrole, wherein one of the meso-carbons was missing in 
the skeleton, by the cyclization of a tetrapyrrolic 
precursor (Johnson and Kay 1964). Efficient one-pot 
syntheses of meso-substituted corroles were reported 
recently (Gross et al. 1999, Gryko and Jadach 2001). In 
1966, Woodward reported the first example of an 
expanded porphyrin with a 22 π-electron system, 

Fig. 9. Confused porphyrins 

Fig. 10. Expanded porphyrins 
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sapphyrin, which contained five pyrrole rings and four 
meso-carbons (Woodward 1966). 
 
6. Porphyrins with heteroatoms 
 
 Porphyrin analogs containing heteroatoms such 
as O, S, Se and Te have also been synthesized (Fig. 12, 

13) by the groups of Lee and Latos-Graźyński (Heo et al. 
1996, Heo and Lee 1996, Lee and Kim 1997, Lee et al. 
1999, Yoon and Lee 2000, Sprutta and Latos-Graźyński 
1999, Pacholska et al. 2000, Sprutta and Latos-Graźyński 
2001, Pushpan et al. 2001).  

Furthermore, Lash and co-workers reported 
syntheses of a series of CNNN- and CNCN-core 
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porphyrins including ‘true’ carbaporphyrins, which 
contain a cyclopentadienyl unit in the macrocycle 
(Fig. 14) (Lash and Hayes 1997, Hayes et al. 1998, Lash 
et al. 1999).  
 
7. Calixpyrrols 
 

Calix[n]pyrroles are porphyrin analogs that 
contain pyrroles bridged exclusively by sp3 meso carbon 
centers. In contrast to porphyrins they are not planar and 
display remarkable anion-binding properties (Sessler et 
al. 2001). The most simple calixpyrrol – porphyrinogen 
(Fig. 15) can be seen as a reduced form of porphyne. 

Examples of anion binding (Gale et al.1996) of 
chlorine and fluorine are shown below (Fig. 16). Picture a 
shows X-ray structure binding of chlorine and picture b – 
shows X-ray structure binding of fluorine anion. 

 
8. Calixphyrins 
 

Calixphyrins are a class of hybrid molecules that 
lie at the structural crossroads between porphyrins and 
calixpyrroles. Calixphyrins encompass all porphyrin 
analogs that contain a mixture of sp2- and sp3-hybridized 
bridging meso carbon centers. In the case of hybrid 
systems containing four pyrroles, calix[4]phyrins, this 
definition encompasses systems with one, two, and three 
sp2-hybridized bridging meso carbons. This leads to 
partial interruptions in the conjugation pathway of the 
molecule, introduces novel structural features, and leads 

to interesting anion and cation recognition properties 
(Sessler et al. 2001). There are known porphomethenes 
(one sp2-hybridized meso carbon atom), 
porphodimethenes (two sp2-hybridized meso carbon 
atoms, arranged in either a “cis-” or “trans-like” (i.e., 
5,10 or 5,15) fashion across the macrocycle), 
isoporphyrins (three sp2-hybridized meso carbon atoms, 
one NH hydrogen atom), and phlorins (three sp2-
hybridized meso carbon atoms, three NH hydrogen 
atoms) (Fig. 17). 
 In addition to porphyrins, the calixphyrins can 
also form expanded species (Fig. 18). 
 
9. Applications 
 
Photodynamic theraphy (PDT) 
 
History of PDT 

While the term PDT is relatively new, this 
binary modality of treating diseases can be traced far 
back in history. The ancient Egyptians used the 
combination of orally ingested plants (containing light-
activated psoralens) and sunlight to successfully treat 
vitilago over 4000 years ago (Edelson 1988). The use of 
ultraviolet light and psoralens for the treatment of 
psoriasis (PUVA) has been accepted throughout the 
world (Baden 1984). Contemporary PDT began when 
Raab described, in 1900, the action of acridine dyes and 
light on Paramecia, where he showed that these 
unicellular organisms could be effectively killed with this 
combination (Raab 1900). Trappeiner treated, in 1903, a 
skin cancer with topically applied eosin and light 
(Tappeiner 1903). In 1913 Meyer-Betz injected himself 
with 200 milligrams of hematoporphyrin (1) and 
registered no ill effects until he exposed himself to 
sunlight, whereupon he suffered extreme swelling, this 
photosensitivity remained for several months (Laurens 
1933, Meyer-Betz 1913). In 1925 Policard examined the 
ability of porphyrins to produce a phototoxic effect 
(Policard 1925) and is indeed, the most recent 
photoactive based drug therapies utilize porphyrin-based 
chromophores in combination with visible light. 
Phototherapy was dormant for several decades, although 
the idea that light could be a therapeutic modality was 
well explored. For instance, a book published in 1933 
lists over a thousand papers exploring UV light for the 
treatment of a wide variety of ailments, which included 
arthritis, colitis, lupus, and mental diseases (Gauvain 
1933). The usefulness of high dose light might, at first 
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Fig. 14. Carbaporphyrins 

 
 

 
Fig. 15. 
 

 
sight, not seem rational for the treatment of such diseases 
but in the case of auto-immune disorders, the immuno-
suppressing nature of UV light is now well established 
(Luger and Schwartz 1995). 

Photodynamic therapy (PDT), a new treatment 
modality, involves administration of a tumor-localizing 
photosensitizing agent (PS) followed by activation of the 
agent by light of a specific wavelength resulting in a 
sequence of photochemical and photobiological processes 
that cause irreversible photodamage of tumor tissues. The 
hallmark of PDT is intracellular oxidative stress 
mediated by reactive oxygen species (Fig. 19).  

In order to achieve the most efficient 
photosensitizing effect on tumor cells, the sensitizer must 
enter the cell and become closely associated with the 
subcellular structure(s). Photosensitizers may enter cells 
either directly through the plasma membrane or by 
endocytosis. Uptake over the plasma membrane may 
occur by simple or facilitated diffusion or by an active 
transport mechanism. The incubation parameters and 
mode of delivery as well as the chemical nature of the 
photosensitizer (molecular size, charge, water-lipid 
partition coefficient, concentration), the type and 

physiological state of the cell, the environmental 
conditions and the nature of the carrier can all influence 
subcellular localization, creating a number of potential 
targets for photodamage (Gomer 1991, Henderson and 
Dougherty 1992).  
 
Mechanism of the tumor localising effect in PDT 
 (i) Cancer cells, in common with other rapidly 
proliferating cells, may have an increased requirement for 
cholesterol for membrane biosynthesis. They may 
therefore upregulate the expression of the low-density 
lipoprotein (LDL) receptor (which recognises the apoB/E 
lipoprotein) (Maziere et al. 1991). It is known that 
lipoproteins are major carriers of lipophilic porphyrins in 
the bloodstream (Jori et al. 1984) and may therefore be a 
means of entry of these compounds into cells. 
(ii) A decreased intratumoral pH may affect the 
ionization of porphyrin species with weakly acidic pK 
values, thus retaining them within tumours (Pottier and 
Kennedy 1990).  
(iii) Tumours often contain increased numbers of lipid 
bodies and particularly neutral lipid droplets, in addition 
their cell membranes may be more hydrophobic than 
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Fig. 16. Calixpyrrols aniont binding 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 17. Calix[4]phyrins 
 
 
those of normal cells. Both phenomena might explain the 
accumulation of hydrophobic photosensitisers (Freitas 
1990). 
(iv) A combination of “leaky” tumour vasculature and 
reduced lymphatic drainage might encourage the build-up 

of porphyrins (whether as aggregates or protein 
complexes) in the interstitial space (Bugelski et al. 1981). 
 (v) Tumour cells may have increased capabilities for 
phagocytosis or pinocytosis of porphyrin aggregates (Jori 
1989). 
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 (vi) Tumour-associated macrophages (TAM) may be 
largely responsible for the concentration in tumours 
(Korbelik 1992), Korbelik et al. have found that TAM 
may contain up to nine times the porphyrin levels present 
in tumour cells (Korbelik et al. 1991). Many 
experimental tumours can comprise up to 80 % TAM 
(Milas et al. 1987).  
 
 

 
Fig. 18. Expanded calixphyrins 
 
 
 And even in human cancers TAM can make up 
20-50 % of the cellular content. A high macrophage 
content is also a common factor with all the other sites of 
photosensitiser accumulation listed above. 

Photodynamic therapy induces a highly complex 
series of changes in cells. The sequence of events in PDT 
are shown in following figure, fromwhich it can be seen 
that complete establishment of the protocol requires 
wider study of biochemical and photochemical 
phenomena (Fig. 20).  

It is likely to affect multiple cell targets, of 
which cell membranes and mitochondria are of particular 
importance (Kessel and Luo 1999). But which may also 
include lysosomes, endoplasmic reticulum, DNA and 
microtubules (Henderson and Dougherty 1992, Morgan 
and Oseroff 2001, Berg and Moan 1997). Following 
exposure, cells experience a rapid increase in calcium 
concentration accompanied or followed by other 
electrolyte changes as membrane damage progresses. 
Sublethal damage may, via various signal transduction 
pathways, result in apoptosis characterized by a drop in 
mitochondrial potential, concurrent with a drop in ATP 
level and a decrease in cell respiration, translocation of 
phosphatidylserine of the plasma membrane, DNA 
fragmentation, appearance of apoptotic bodies and 
eventually loss of plasma membrane integrity (Carre et 
al. 1999). The signaling cascades involved in this process 
are under investigation. The involvement of components 
of signalling network such as cell surface death receptor 

Fas (Ahmad et al. 2000). tumor necrosis factor (TNF) and 
TNF-related apoptosis-inducing ligand TRAIL (Granville 
et al. 2001) as well as downstream molecules such as 
caspases (Granville et al. 1997) and Bcl-2 family 
members (Srivastava et al. 2001) have been demonstrated 
in various PDT-induced models of cell death. Recently, 
protein phosphorylation as an important regulator of the 
apoptotic process has been highlighted (Anderson 1997). 
Apoptotic signalling cascade in photosensitized human 
epidermal carcinoma cells was mediated by two-stage 
activation of the c-Jun N-terminal kinase/stress-activated 
protein kinase (JNK/SAPK) (Chan et al. 2000). 

Very essential for in vivo efficacy of PDT is the 
selective retention of PS in neoplastic tissues. It is 
determined, among other factors, by the hydrophobicity 
and aggregated state of the PS, decreased pH in tumors, 
tumor neovascular effects, poorly developed tumor 
lymphatics, differences in the stromal cells and 
heterogeneity of the cells within the tumor (Hasan and 
Parrish 1996). The asymmetry of charge distribution has 
also been suggested as an explanation for the higher 
uptake of PS (Kessel et al. 1987). The underlying 
mechanism reveals a complex interaction of direct and 
indirect antitumor effects triggered by PDT, which may 
act to mediate tumor destruction. A direct tumor cell 
killing results from lethal events initiated by reactive 
oxygen species. Indirect PDT effects represent necrosis 
resulting from damage of tumor-associated vasculature 
with subsequent infarctive death of the tumor cells and 
initiating a post-treatment immune response directed 
against tumor cells (Henderson and Dougherty 1992, 
Dougherty et al. 1998). The effects of PDT were found to 
be modulated by dose, or dose rate changes, conjugations 
of photosensitizers to lipoproteins or liposomes, or by the 
addition of chemotherapeutic agents. The response of 
different tumors to PDT is highly variable, ranging from 
high sensitivity to extreme resistance. Factors such as 
photosensitiser localization properties at different levels 
(tumor tissue, cellular and intracellular distribution) and 
tumor oxygenation/vascularity have been identified as the 
parameters determining tumor sensitivity to PDT. 
However, a number of other physiological properties 
characterizing individual tumors may exert a marked 
influence on the therapeutic outcome. One such property 
appears to be tumor immunogenicity, since immune 
reaction induced by PDT against treated tumors can 
substantially contribute to the cure. Local level of nitric 
oxide (NO), which directly influences multiple events 
participating in the antitumor effect of PTD, is another 
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Fig. 19. Generation of excited porphyrin states and reactive dioxygene species 

 
 

important, but less recognized parameter (Ali and Olivo 
2003). The relevance of this radical, whose production 
varies considerably in different cancers, to the process of 
PDT mediated tumor destruction, has been the subject of 
recent studies. 

Many reports in the current literature are 
confusing, and often apparently contradictory. There is 
clearly scope for much greater understanding and future 
studies should more systematically address phenomena in 
a range of cell types, photosensitizers, and treatment 
conditions.  
 
Desirable Properties For PDT Drug 
  
 The drug (photosensitizer) is the essential part in 
PDT. An ideal drug should have the following properties: 
(i) Proper absorption wavelenagth: Due to light 
absorption by endogenous chromophores, mainly 
hemoglobin and light scattering, the effective light 
penetration through tissue is very poor in the low 
wavelength region of the visible spectrum (Wilson 1989). 
As the wavelength increases, the effective light 
penetration increases as well. Experiments indicate the 
light penetrates effectively through tissue in the red to the 
near infrared region (≥650 nm) (Wainwright 1996, Lown 
1997). As a result, the ideal drug is one that exhibits a 
strong absorption in such a region (≥650 nm). 

(ii) High preference for accumulation in the tumor: The 
drug must have a selectivity for enrichment in the 
tumorous tissue vs the normal tissue. Since singlet 
oxygen is also detrimental to the healthy tissues, a 
differentiation of drug concentration between biological 
compartments must be achieved before the irradiation. 
This ensures that the efficient destruction of the diseased 
tissue takes place while the healthy tissue remains intact 
or experiences less ill effect. 
(iii) Low dark toxicity and quick metabolization: The 
PDT drug itself should be non-toxic in the absence of 
light. The drug should be excreted or metabolized quickly 
in a way that does not generate toxic metabolites of any 
kind after the treatment is complete. 
(iv) From the standpoint of chemical synthesis, the drug 
should be made from readily available materials and the 
protocol of synthesis should be simple and able to be 
scaled up to an industrial scale. It should contain groups, 
such as phenyl group which allows easy derivatization or 
variation in order to optimize various properties of the 
drug. 
(v) It should exhibit some preferred physical or 
photophysical properties for drug administration, such as 
good solubility in water and in the body's tissue fluid, 
easy formulation (Woodburn et al. 1994), high quantum 
yield of triple formulation, with a triplet energy greater 
than 94 kJ/mol, and high singlet oxygen quantum yield. 

.
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Fig. 20. Sequence of events in PDT 
 

 
Structure of photosenzitizers 
 

All sensitisers to date are based upon porphyrin-
like molecules e.g. porphyrins, chlorins, bacteriocholins 
and pthalocyanines. The in-vivo photodynamic properties 
of tetrapyrrolic pigments such as porphyrins has been 
known since the early 1900’s when Meyer-Betz self-
administered haematoporphyrin (Hp) to determine its 
biological effect. To date the water soluble 
haematoporphyrin derivative (HpD) I, and its purified 
form commercialised under the trade name Photofrin II, 
have been used extensively in clinically treating a variety 
of malignancies. In particular, Photofrin II and complex 
mixture of porphyrins originated by chemical 
modification of haematoporphyrin (Hp) (Byrne et al. 
1990) has been recently approved for the PDT of specific 
tumors at a clinical level in several countries (McDonald 
and Dougherty 2001). At present, a few thousand patients 

have been treated by PDT with Photofrin worldwide with 
objectively positive results (Schmidt-Erfurth et al. 1997, 
Stewaert et al. 1998). HpD is formed by the treatment of 
haematoporphyrin with a mixture of acetic and sulphuric 
acids to give a complex mixture of dimers and oligomers. 
The active component of HpD is believed to be either the 
dihaematoporphyrin ether II or di-haematoporhyrin ester 
(DHE). Clinical trials using HpD have proven PDT to be 
an effective cancer therapy and has shown considerable 
success in many human tumors. Further various expanded 
porphyrins have been synthesized and investigated for 
medical applications such as photodynamic therapy 
(PDT) (Bonnett 1995). On the following picture some 
photosenzitizers are shown (Fig. 21). 
 
Saccharide recognition 
 

Porphyrins represent an important class of 
naturally occurring compounds with unique optical 
properties. Porphyrins exhibit characteristic sharp and 
intense absorption maxima in the visible region of spectra 
(Soret band) and also in fluorescence, both of these 
properties are very advantageous for analytical 
applications. The introduction of suitable meso-
substituent the planar porphyrin core allows to obtain 
three dimensional cage, cavity and cleft structures, which 
are effective for substrate entrapping. Taking into account 
all these factors porphyrin can be considered as 
perspective sensing molecule for recognition of 
bioanalyts. Water-soluble porphyrins have been recently 
extensively studied, mainly due to their possible madico-
biological applications. The use of porphyrins and their 
derivatives (Fig. 22) for molecular recognition of 
saccharides is a very promising approach in such 
intriguing problem as molecular recognition of 
saccharides and modern bioanalytical chemistry (Lu 
2006, Dukh et al. 2003, Rusin et al. 2001, Rusin et al. 
2002, Murakami et al. 1994, Král et al. 2000, James et al. 
1996). 

 
Other applications 
 

We have recently demonstrated (Králová et al. 
2003) application of designed positively charged 
porphyrins for antisense and antigen application in terms 
of facilitated oligonucleotide transport. Leading 
structures are summarized below (Fig. 23). 

Metalloporphyrins in connection with 
poly(ethylene glycol) (PEG) units have been used as 
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Fig. 21. Photosensitizers approved for use in PDT 
 

 
oxygen carriers (Tsuchida et al. 2006). This system is 
based on (PEG) conjugated recombinant human serum 
albumin (HSA) incorporating the synthetic iron-
porphyrin (FeP) [PEGylated albumin-heme, PEG(HSA–
FeP)] and is a unique albumin-based oxygen carrier as a 
red blood cell (RBC) substitute.  

One rational approach to designing tumor-
targeting platinum(II) complexes (Sohn et al. 2003) is to 
introduce a suitable carrier ligand which tends to 
accumulate in the tumor tissue. Some porphyrins are 

known to selectively accumulate in the tumor tissue. The 
tumor-targeting properties of porphyrins are known to be 
dependent on their hydrophobicity and hydrophilicity 
balance. In general, the insolubility of most porphyrin 
derivatives in aqueous solution causes serious problems 
in biological applications, but some amphiphilic 
porphyrins are known to selectively accumulate in tumor 
tissues. A systematic variation of the amphiphilic 
properties requires a regiochemical arrangement of 
hydrophobic and hydrophilic substituents in the structure. 
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Fig. 22. Synthetic receptors for saccharides 
 
 

A new series of platinum (II) complexes (Sohn 
et al. 2003) of pegylated hematoporphyrin derivatives 
with controlled hydrophobic/hydrophilic balance was 
synthesized by introducing different kinds of 
poly(ethylene glycol) and amine ligands to the porphyrin 
ring (Fig. 24). 
 The antitumor activity of the porphyrin–
platinum(II) conjugates was assayed in vitro and in vivo 
against the leukemia L1210 cell line and various human 

tumor cell lines. The present complexes exhibited high 
antitumor activity and improved water solubility as well 
as considerable lipophilicity.  

Porphyrin-peptide conjugates bearing a nuclear 
localizing sequence SV40 or a fusogenic peptide (HIV-
1Tat 40-60 or octa-arginine) linked by low molecular 
weight poly(ethylene glycol) have been prepared 
(Vicente et al. 2006) and utilized in in vitro studies using 
human HEp2 cells. The porphyrins were designed to 
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Fig. 23. Oligonucleotide transport agents 
 
 

 
 
 
 

 
 

 
 

contain a peptide sequence (NLS or fusogenic peptide) 
linked by a low molecular weight PEG in order to 
minimize intramolecular interactions between the 
porphyrin and the peptide moieties and to enhance their 
water solubility (Fig. 25). 
 Previous studies have shown that PEG-drug 
conjugates display enhanced water solubility, serum life, 
and tumor accumulation. The studies show that the 

cellular uptake of the conjugates depends significantly on 
the nature and sequence of amino acids in the peptide and 
on the nature of the substituents on the porphyrin 
macrocycle. The fusogenic peptide sequences HIV-1Tat 
40-60 and octa-arginine were the most effective in 
delivering the conjugates to the cells.  

The new tri(ethyleneglycol)-derivatized Mn(III) 
porphyrins were synthesized (Dewhirst et al. 2006) with 
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Fig. 26. Tri(ethyleneglycol)-derivatized Mn(III) porphyrin    
 

 
Fig. 27. Pegylated zinc protoporphyrin (PEG-ZnPP) 
 
 

 
Fig. 28. Metallodeuteroporphyrin IX-2,4-bisethylene glycol 
 
 

the aim of increasing their bioavailability, and blood-
circulating half-life (Fig. 26).  
 Substitution with 1-(2-(2-(2-methoxy-
ethoxy)ethoxy)ethyls in ortho positions of meso pyridyl 
and imidazolyl substituents significantly increased blood-

circulating half-life and decreased unfavorable 
interactions with biological molecules. The presence of 
oxygen atoms in substituents on pyridyls and imidazolyls 
eliminated their surfactant-like properties. Consequently, 
they were not toxic in a simple model of oxidative stress, 
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SODdeficient E. coli. They possess the highest ability to 
disproportionate O2•− among meso-substituted 
porphyrins. 

Selective delivery of 10B to tumours is one of 
the major remaining problems in boron neutron capture 
therapy (BNCT) of cancer. Because the porphyrins are 
selectively accumulated in tumours, they were used in 
connection with carboran units. The solubility was 
ensured with PEG substitution. Thus two series of 
carborane-carrying porphyrins (Threadgill et al. 2003) 
were constructed, with additional functionality for 
attachment of uncharged potentially water solubilising 
polyethers. Meso-substituted porphyrins carrying 
carboranes and oligo(ethylene glycol) units have been 
used for potential applications in boron neutron capture 
therapy. 

Zinc protoporphyrin (ZnPP) was conjugated 
with poly(ethylene glycol) (PEG) with a molecular 
weight of 5000 kDa, to make ZnPP, a water-soluble 
compound (PEG-ZnPP), and to improve its tumor-
targeting efficiency (Maeda et al. 2002), (Maeda et al. 
2003), (Maeda et al. 2004) (Fig. 27). 
 The divalent zinc cation was chelated into the 
protoporphyrin ring to obtain PEG-ZnPP. PEG-ZnPP 
became highly water-soluble, and formed multimolecular 
associations with molecules larger than 70 kDa in 

aqueous media. PEG-ZnPP inhibited splenic microsomal 
HO activity in vitro in a competitive manner in the 
presence of hemin, with an apparent inhibitory constant 
of 0.12 µM. Most important, PEG-ZnPP injected 
intravenously significantly suppressed intratumor HO 
activity in a murine solid tumor model, which suggests 
that tumor-targeted inhibition of HO is possible with the 
use of PEG-ZnPP.  
 A number of metallo-deuteroporphyrins have 
been synthesized and tested for their ability to modulate 
HO (Maines 2005). For example, zinc deuteroporphyrin 
IX 2,4-bis glycol (Fig. 28) dramatically inhibits heme 
oxygenase activity. This structure which was prepared 
and tested in 1988 (Martásek et al. 1988) showed the 
highest inhibition of HO from prepared 
metallocomplexes. The zinc metallocomplex has been 
intensively explored in the field of HO (Atzori et al. 
2004). 
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